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Abstract
Diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging (MRI) data of 28 patients were
obtained pretreatment, after one cycle, and after completion of all cycles of neoadjuvant chemotherapy (NAC). For
each patient at each time point, the tumor cell number was estimated using the apparent diffusion coefficient and the
extravascular extracellular (ve) and plasma volume (vp) fractions. The proliferation/death rate was obtained using the
number of tumor cells from the first two time points in conjunction with the logistic model of tumor growth, which
was then used to predict tumor cellularity at the conclusion of NAC. The Pearson correlation coefficient between
the predicted and the experimental number of tumor cells measured at the end of NAC was 0.81 (P = .0043). The
proliferation rate estimated after the first cycle of therapy was able to separate patients who went on to achieve
pathologic complete response from those who did not (P = .021) with a sensitivity and specificity of 82.4% and
72.7%, respectively. These data provide preliminary results indicating that incorporating readily available quantitative
MRI data into a simple model of tumor growth can lead to potentially clinically relevant information for predicting an
individual patient’s response to NAC.
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Introduction
Neoadjuvant chemotherapy (NAC) is increasingly used in women with
locally advanced breast cancer because it can allow downstaging of can-
cers to render them operable and/or to facilitate breast conservation
surgeries [1,2]. Furthermore, early assessment of clinical response to
NAC may provide clinicians with the ability to identify patients that
are not responding to their current therapy, thereby allowing the ability
to explore alternative therapies that could prove to be more effective.
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Mathematical models of tumor growth and treatment response
have the potential to predict the status of a tumor at a later time point
[3–5], but most models require invasive parameters that are extra-
ordinarily difficult to measure for individual patients. This has led to
the limited application of mathematical models in clinical care and clini-
cal trials. One way to potentially overcome this limitation is through the
use of noninvasive quantitative imaging data to initialize and constrain
mathematical models. Since imaging data are specific to each patient
and can be obtained at multiple times during the course of therapy, pre-
dictions from models incorporating imaging data will be patient specific
and can also be readily compared to data obtained at a later time point.
In this way, mathematical models initialized by imaging data generate
patient-specific hypotheses that can be experimentally tested. Here, we
focus on using measurements made with diffusion-weighted magnetic
resonance imaging (DW-MRI) and dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) to provide estimates of tumor
cellularity to initialize the logistic model of tumor growth.
DW-MRI provides a noninvasive measurement of the degree of

random motion of water in tissue. The rate of this diffusion is quan-
tified by the apparent diffusion coefficient (ADC) and largely depends
on the presence of barriers to water diffusion within the tissue micro-
environment. In well-controlled settings, it has been shown that the
ADC inversely correlates with tissue cellularity [6–11]. ADC changes
have also been reported after chemotherapy; in particular, several
clinical studies in patients with breast cancer have shown an increase
in the mean ADC values after NAC [12–15].
DCE-MRI involves the injection of a paramagnetic contrast agent

(CA) that can lead to variation of the MR signal intensity with time.
By using appropriate pharmacokinetic models, microvascular physio-
logical parameters related to blood flow, vessel permeability, and tis-
sue volume fractions can be extracted from the signal intensity time
curves [16]. DCE-MRI changes have also been reported after chemo-
therapy; in particular, several clinical studies in patients with breast
cancer undergoing NAC have shown changes in DCE-MRI after
treatment [17–20].
Historically, mathematical models of tumor growth do not include

noninvasive parameters obtained from imaging. More recently, how-
ever, there have been a number of exciting efforts on this front. For
example, Ellingson et al. [21] used ADC data and Szeto et al. [22]
used serial gadolinium-enhanced T1- and T2-weighted MR images of
patients with glioblastoma combined with a reaction-diffusion equation
to estimate the proliferation and tumor cell diffusion rates. Konukoglu
et al. [23] used diffusion tensor imaging data and T1- or T2-weighted
MR images in conjunction with the reaction-diffusion equation to
estimated the rate of diffusion of tumor cells. These studies, however,
do not make explicit use of the biophysical relationships between cel-
lular variations and the ADC values and also the volume fractions that
can be obtained from DCE-MRI measurements.
In a previous study of treatment in the 9L rat model of brain cancer,

we used serial DW-MRI data obtained before and 1 day after treat-
ment with bis-chloroethylnitrosourea (BCNU; Carmustine) to esti-
mate tumor proliferation rates and cellularity [24]. The prediction
of the number of tumor cells 3 days after treatment compared favor-
ably to those measured from experimental imaging data. We were also
able to observe a statistically significant difference in the proliferation
rates in the treated and control rats after 1 day of treatment. We also
reported preliminary results in breast cancer patients undergoing
NAC, in which the DW-MRIs for the patients were obtained before,
after one cycle, and after completion of NAC [25]. We predicted the
number of tumor cells at the conclusion of chemotherapy and com-
pared this to experimental imaging data. The prediction of the number
of tumor cells at the end of therapy compared favorably to those mea-
sured from experimental imaging data.

In this contribution, we show preliminary results indicating how
serial DW- and DCE-MRI data can be used to estimate tumor cellu-
larity and how changes in cellularity observed after one cycle of NAC
can allow for an estimate of the tumor proliferation rate. The prolifer-
ation rate is then used to predict the tumor cellularity at the conclusion
of therapy and is compared to the observed MRI data. Lastly, the pro-
liferation rate is used to separate patients who will achieve pathologic
complete response (pCR) from those who will not.

Materials and Methods

Patient Population
DW- and DCE-MRI were acquired from 28 patients with stage II/III

breast cancer. The patients provided informed consent, and the study
was approved by our Institutional Review Board. Patient age, treatment
regimen, receptor status, tumor size, and grade are summarized in
Table 1. The patients received 8 to 16 cycles of NAC, which was ad-
ministered weekly, biweekly, or every 3 weeks depending on the par-
ticular regimen. DW- and DCE-MRI of the patients were obtained
before any treatment (t1), after one cycle (t2), and at the completion (t3)
of NAC. Only 22 DW- and DCE-MRI data sets were available at t3. At
the conclusion of NAC, the patients underwent surgery and pathologic
response was determined. The patients were separated into two groups
based on the surgical pathologic data: those with no residual invasive can-
cer in the breast or lymph nodes were classified as achieving pCR (n = 11)
and those with any residual disease in either the breast or lymph nodes
were classified as nonresponders (NR; n = 17). Of the 17 NR patients,
eight were not included in the correlation with experimental imaging
data at t3 due to the following reasons: no DW-MRI coverage of tumor
(n = 2), patients did not return for imaging (n = 3), problem with the
contrast line (n = 1), no enhancing voxels found in DCE-MRI data
(n = 1), and no residual breast tumor (disease in lymph nodes; n = 1).

Imaging Protocol
DW- and DCE-MRI were performed using a Philips 3T Achieva

MR scanner (Philips Healthcare, Best, The Netherlands) equipped
with either a 4- or 16-channel receive double-breast coil (Invivo Inc,
Gainesville, FL).

DW-MRIs were acquired with a single-shot spin echo echo planar
imaging sequence in three orthogonal diffusion encoding directions (x,
y, and z), with two b values [0 and 500 s/mm2 for 12 patients (pCR =
6; NR = 6), 0 and 600 s/mm2 for 14 patients (pCR = 5; NR = 9), and
50 and 600 s/mm2 for 2 patients (NR = 2)], repetition time/echo time
(TR/TE) = 3080 ms/43 ms, Δ = 20.7 milliseconds, δ = 11.6 milli-
seconds, and number of signal acquisitions = 10 for a total scan time
of 4 minutes and 40 seconds [signal-to-noise ratio (SNR) in diffusion
weighted imaging (DWI) is typically low, relative to standard anatomic
sequences, and thus, we acquired multiple measurements to increase
the SNR]. The acquisition employed a sensitivity encoding (SENSE)
factor of 2 with a 96 × 96 × 12 matrix over a field of view (FOV) of
(19.2 cm)2 reconstructed to 144 × 144 with a slice thickness of 5 mm
with a resulting voxel size of 1.333 × 1.333 × 5 mm3. A spectrally
selective adiabatic inversion recovery fat saturation was implemented
to reduce image artifacts. DCE-MRI data were acquired with a
three-dimensional radio frequency (RF)-spoiled gradient echo sequence



258 Modeling Breast Tumor Growth with MRI Data Atuegwu et al. Translational Oncology Vol. 6, No. 3, 2013
with TR/TE/α = 7.9 ms/1.3 ms/20°. The acquisition matrix employed
a SENSE factor of 2 with a 192 × 192 × 20 matrix over an FOV of
(25.6 cm)2, a slice thickness of 5 mm resulting in a voxel size of 1.333 ×
1.333 × 5 mm3. Data for the T1 map were acquired with 10 flip angles
from 2° to 20° in 2° increments. The same protocol (with the flip
angle fixed at 20°) was used for the dynamic study in which each
20-slice set was collected in 16 seconds at 25 time points. A catheter
placed within an antecubital vein delivered 0.1 mmol/kg gadolinium-
diethylenetriamine pentaacetic acid (Magnevist; Berlex, Wayne, NJ) at
a rate of 2 ml/s (followed by a saline flush) through a power injector
after the acquisition of the first three dynamic scans.

The diffusion, T1, and dynamic image volumes were all acquired
with the same center location and with minimal patient motion,
thereby making them inherently co-registered.

DW-MRI Analysis
ADC maps were calculated from the DW-MRI data using the

following equation:

ADC =
∑i¼x;y;z lnðS0=SiÞ=bi

3
; ð1Þ

where i is the diffusion-weighting direction, bi is the amount of
diffusion-weighting imparted to the sample, S i and S0 are the mea-
sured signal in each voxel [26]. Voxels with negative ADC values
were not used for the analysis.

DCE-MRI Analysis
DCE-MRI data were analyzed by the fast exchange limit formalism

[27,28] in which the longitudinal relaxation rate constant, R1, is
assumed to be linearly proportional to the concentration of CA in
the tissue, C t(t). To compute C t(t), we used the extended Tofts-Kety
(ETK) relationship which includes the blood plasma fraction, vp [29],
shown in the following equation:

CtðT Þ = K trans
ZT

0

CpðtÞexp − K trans=veð ÞðT − tÞð Þdt + vpCpðtÞ; ð2Þ

where K trans is the volume transfer constant, ve is the extravascular
extracellular volume fraction, and Cp(t) is the concentration of CA in
blood plasma [i.e., the arterial input function (AIF)]. We used a popu-
lation average AIF that resulted from the averaging of 50 different indi-
vidual AIFs obtained from scans of patients with breast cancer [30].
Tumor ROI Selection
Region of interests (ROIs) were manually drawn on multiple slices

to cover the entire visible tumor as seen at each imaging time point.
The voxels within the outlined ROI that showed a postcontrast sig-
nal (Spost) intensity ≥80% of the precontrast signal intensity (Spre)
were considered the tumor voxels. This was calculated as follows:

Enh = 100 � Spost − Spre
Spost

� �
: ð3Þ

Eighty percent was selected as it is the enhancement threshold that
resulted in the greatest agreement between tumor size as measured by
MRI at t3 and the size of the pathology tumor specimen [Pearson
and concordance correlation coefficient were 0.84 (P < 10−6) and
0.74, respectively; data not shown]. Thus, it is reasonable criteria
to select voxels for further analyses.
Table 1. Summary of the Patient Data.
Patient
 Age (years)
 Treatment Regimens
 Receptor Status (ER, PR, HER2)
 Size Pretreatment (cm)
 Tumor Grade
 Residual Tumor Size (cm)
 Clinical Response
1
 50
 AC→taxol
 +, +, −
 10
 3
 0.52
 NR

2
 52
 Taxotere
 +, −, +
 5
 3
 1.5
 NR

3
 60
 AC→taxol + concurrent trastuzumab
 +, +, +
 5
 2
 2.9
 NR

4
 36
 Taxol + cisplatin ± everolimus
 −, −, −
 7
 2
 2.9
 NR

5
 48
 Dose-dense AC→taxol
 +, +, −
 3
 1
 1.3
 NR

6
 43
 Dose-dense AC→taxol
 +, +, −
 6
 2
 2.6
 NR

7
 59
 Dose-dense AC→taxol
 +, +, −
 7
 2
 4.2
 NR

8
 53
 Taxol + cisplatin ± everolimus
 −, −, −
 3.5
 2
 1.3
 NR

9
 35
 Trastuzumab + carboplatin + ixabepilone
 +, +, +
 4
 3
 1.4
 NR

10
 28
 Taxol + cisplatin ± everolimus
 −, −, −
 2
 3
 0.8
 NR

11
 33
 AC→taxol
 +, +, −
 5
 3
 1.2
 NR

12
 39
 AC→taxol
 +, +, −
 10
 1
 2.5
 NR

13
 57
 AC→taxol
 −, +, +
 5.5
 3
 n/a
 NR

14
 67
 Dose-dense AC→taxol
 −, +, +
 8
 3
 1.2
 NR

15
 45
 Taxol + cisplatin ± everolimus
 −, −, −
 3
 3
 0.5
 NR

16
 46
 Taxotere + carboplatin + herceptin
 +, +, +
 7
 3
 0.3
 NR

17
 47
 Taxotere→AC
 +, +, −
 6
 1
 0
 NR*

18
 53
 AC→concurrent taxol + trastuzumab
 −, −, +
 4
 3
 0
 pCR

19
 46
 Taxotere→AC
 −, +, −
 5
 3
 0
 pCR

20
 46
 AC→concurrent taxol + trastuzumab
 −, −, +
 12
 2
 0
 pCR

21
 33
 AC→weekly taxol
 −, −, −
 10
 3
 0
 pCR

22
 39
 Trastuzumab and lapatinib
 −, −, +
 3.5
 2
 0
 pCR

23
 46
 AC→taxol
 +, −, −
 2
 3
 0
 pCR

24
 42
 Taxol + cisplatin ± everolimus
 −, −, −
 3
 3
 0
 pCR

25
 34
 Taxotere→AC
 −, −, −
 3
 3
 0
 pCR

26
 44
 Trastuzumab + lapatinib
 −, −, +
 6
 3
 0
 pCR

27
 37
 Taxol + cisplatin ± everolimus
 −, −, −
 4.5
 3
 0
 pCR

28
 39
 AC→taxol
 −, −, −
 2.5
 3
 0
 pCR
ER indicates estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
*Tumor found in lymph nodes.
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Every voxel in the tumor ROI was fit by the ETK model to return
estimates of ve and vp. (It is important to note that, in the analyses
below, we do not explicitly use the K trans results.) Voxels that did
not converge, converged to unphysical values (ve or vp less than 0
or greater than 1), or where the sum of ve and vp was greater than
1 were not used for subsequent analysis. Since the DW- and DCE-
MRI data were inherently co-registered, the tumor ROIs were drawn
very conservatively to encompass all enhancing voxels on the DCE-
MRI data and was then transferred to the DW-MRI data. We also
visually inspected the registration between the DW- and DCE-MRI
data to ensure that they were registered to each other as we expected.
The median ADC, ve, and vp in the tumor ROI were then calculated
for all the patients at all time points and used for the modeling.
Estimation of the Tumor Cells
As several studies have shown a strong negative correlation between

ADC and cellularity [6–10], we used Equation 4 to convert ADC
values to tumor cell number.

N tð Þ = θ
ADCw � ADCðtÞ
ADCw � ADCmin

� �
vTC tð Þ: ð4Þ
Figure 1. Parametric maps overlain on sagittal, T1-weighted anatom
column). The first row shows the ve obtained before therapy (t1), af
Similarly, the second row shows the vp, the third row shows the A
tumor cells (calculated using the bottom relation in Equation 5) in e
column represent the median values of each parameter.
To calculate the number of tumor cells N (t), we assumed that the
voxel with the minimum ADC (ADCmin) will contain the maximum
number of cells that can fit into that voxel (i.e., the carrying capacity, θ)
[24,25]. Voxels with the ADC of free water (ADCw = 3 × 10−3 mm2/s
[31]) are taken to have zero tumor cells [24,25].

To calculate θ, we assumed spherical tumor cells with a sphere
packing density of 0.7405 [32]. We assumed a nominal tumor cell
radius of 10 μm to arrive at a tumor cell volume of 4189 μm2; from
this value, and the voxel volume, the tumor cell number can be
determined for a given voxel. We then computed the volume of voxel
that can be occupied by tumor cells vTC in two ways: 1) assume the
entire voxel was made of tumor cells and 2) incorporate both ve and vp
from the ETK model into the calculation. The following equation
summarizes this approach:

vTCðtÞ = 1 assume ve = vp = 0
1 − veðtÞ − vpðtÞ veðtÞ and vpðtÞ f rom the ETK model

�

ð5Þ

We converted the median ADC in the tumor ROI using Equations 4
and 5 to estimate the median number of tumor cells, N estimated(t)
(from the first relation in Equation 5), and N estimated_ETK(t) (from
ic scans for a pCR patient at each time point (one time point per
ter one cycle of therapy (t2), and at the conclusion of therapy (t3).
DC maps (×10−3 mm2/s), and the last row shows the number of
ach voxel (×105) at these same time points. The numbers in each












